Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.586
Filtrar
1.
Med Sci (Paris) ; 40(4): 369-376, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38651962

RESUMO

Artificial intelligence and machine learning enable the construction of predictive models, which are currently used to assist in decision-making throughout the process of drug discovery and development. These computational models can be used to represent the heterogeneity of a disease, identify therapeutic targets, design and optimize drug candidates, and evaluate the efficacy of these drugs on virtual patients or digital twins. By combining detailed patient characteristics with the prediction of potential drug-candidate properties, artificial intelligence promotes the emergence of a "computational" precision medicine, allowing for more personalized treatments, better tailored to patient specificities with the aid of such predictive models. Based on such new capabilities, a mixed reality approach to the development of new drugs is being adopted by the pharmaceutical industry, which integrates the outputs of predictive virtual models with real-world empirical studies.


Title: L'intelligence artificielle, une révolution dans le développement des médicaments. Abstract: L'intelligence artificielle (IA) et l'apprentissage automatique produisent des modèles prédictifs qui aident à la prise de décisions dans le processus de découverte de nouveaux médicaments. Cette modélisation par ordinateur permet de représenter l'hétérogénéité d'une maladie, d'identifier des cibles thérapeutiques, de concevoir et optimiser des candidats-médicaments et d'évaluer ces médicaments sur des patients virtuels, ou des jumeaux numériques. En facilitant à la fois une connaissance détaillée des caractéristiques des patients et en prédisant les propriétés de multiples médicaments possibles, l'IA permet l'émergence d'une médecine de précision « computationnelle ¼ offrant des traitements parfaitement adaptés aux spécificités des patients.


Assuntos
Inteligência Artificial , Desenvolvimento de Medicamentos , Medicina de Precisão , Inteligência Artificial/tendências , Humanos , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Aprendizado de Máquina , Simulação por Computador
4.
Nature ; 626(7997): 177-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123686

RESUMO

The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical spaces1,10-15; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach for the efficient, deep learning-guided exploration of chemical spaces. We determined the antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 compounds. Using explainable graph algorithms, we identified substructure-based rationales for compounds with high predicted antibiotic activity and low predicted cytotoxicity. We empirically tested 283 compounds and found that compounds exhibiting antibiotic activity against Staphylococcus aureus were enriched in putative structural classes arising from rationales. Of these structural classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and reduces bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our approach enables the deep learning-guided discovery of structural classes of antibiotics and demonstrates that machine learning models in drug discovery can be explainable, providing insights into the chemical substructures that underlie selective antibiotic activity.


Assuntos
Antibacterianos , Aprendizado Profundo , Descoberta de Drogas , Animais , Humanos , Camundongos , Antibacterianos/química , Antibacterianos/classificação , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Redes Neurais de Computação , Algoritmos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Modelos Animais de Doenças , Pele/efeitos dos fármacos , Pele/microbiologia , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências
10.
J Med Chem ; 65(4): 3606-3615, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35138850

RESUMO

The origin of small-molecule leads that were pursued across the independent research organizations Roche and Genentech from 2009 to 2020 is described. The identified chemical series are derived from a variety of lead-finding methods, which include public information, high-throughput screening (both full file and focused), fragment-based design, DNA-encoded library technology, use of legacy internal data, in-licensing, and de novo design (often structure-based). The translation of the lead series into in vivo tool compounds and development candidates is discussed as are the associated biological target classes and corresponding therapeutic areas. These analyses identify important trends regarding the various lead-finding approaches, which will likely impact their future application in the Roche and Genentech research groups. They also highlight commonalities and differences across the two independent research organizations. Several caveats associated with the employed data collection and analysis methodologies are included to enhance the interpretation of the presented information.


Assuntos
Descoberta de Drogas/tendências , Indústria Farmacêutica/tendências , Farmacologia/tendências , Bibliotecas de Moléculas Pequenas , DNA/química , DNA/genética , Ensaios de Triagem em Larga Escala , Humanos , Projetos de Pesquisa
11.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164129

RESUMO

Viral infections pose a persistent threat to human health. The relentless epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health problem, with millions of infections and fatalities so far. Traditional approaches such as random screening and optimization of lead compounds by organic synthesis have become extremely resource- and time-consuming. Various modern innovative methods or integrated paradigms are now being applied to drug discovery for significant resistance in order to simplify the drug process. This review provides an overview of newly emerging antiviral strategies, including proteolysis targeting chimera (PROTAC), ribonuclease targeting chimera (RIBOTAC), targeted covalent inhibitors, topology-matching design and antiviral drug delivery system. This article is dedicated to Prof. Dr. Erik De Clercq, an internationally renowned expert in the antiviral drug research field, on the occasion of his 80th anniversary.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas/métodos , Desenho de Fármacos/métodos , Desenho de Fármacos/tendências , Descoberta de Drogas/tendências , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Humanos , Viroses/tratamento farmacológico
12.
J Med Chem ; 65(1): 84-99, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34928151

RESUMO

Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.


Assuntos
Química Farmacêutica/tendências , Desenho de Fármacos , Descoberta de Drogas/tendências , Publicações/tendências , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos
13.
Nucleic Acids Res ; 50(D1): D1398-D1407, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718717

RESUMO

Drug discovery relies on the knowledge of not only drugs and targets, but also the comparative agents and targets. These include poor binders and non-binders for developing discovery tools, prodrugs for improved therapeutics, co-targets of therapeutic targets for multi-target strategies and off-target investigations, and the collective structure-activity and drug-likeness landscapes of enhanced drug feature. However, such valuable data are inadequately covered by the available databases. In this study, a major update of the Therapeutic Target Database, previously featured in NAR, was therefore introduced. This update includes (a) 34 861 poor binders and 12 683 non-binders of 1308 targets; (b) 534 prodrug-drug pairs for 121 targets; (c) 1127 co-targets of 672 targets regulated by 642 approved and 624 clinical trial drugs; (d) the collective structure-activity landscapes of 427 262 active agents of 1565 targets; (e) the profiles of drug-like properties of 33 598 agents of 1102 targets. Moreover, a variety of additional data and function are provided, which include the cross-links to the target structure in PDB and AlphaFold, 159 and 1658 newly emerged targets and drugs, and the advanced search function for multi-entry target sequences or drug structures. The database is accessible without login requirement at: https://idrblab.org/ttd/.


Assuntos
Bases de Dados Factuais , Descoberta de Drogas/tendências , Pró-Fármacos/classificação , Humanos , Terapia de Alvo Molecular , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Relação Estrutura-Atividade
14.
Nucleic Acids Res ; 50(D1): D1382-D1390, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788840

RESUMO

At several stages of drug discovery, bioisosteric replacement is a common and efficient practice to find new bioactive chemotypes or to optimize series of molecules toward drug candidates. The critical steps consisting in selecting which molecular moiety should be replaced by which other chemical fragment is often relying on the expertise of specialists. Nowadays, valuable support can be obtained through the wealth of dedicated structural and knowledge data. The present article details the update of SwissBioisostere, a database of >25 millions of unique molecular replacements with data on bioactivity, physicochemistry, chemical and biological contexts extracted from the literature and related resources. The content of the database together with analysis and visualization capacities is freely available at www.swissbioisostere.ch.


Assuntos
Química Computacional/tendências , Bases de Dados Factuais , Descoberta de Drogas/tendências , Bibliotecas de Moléculas Pequenas/química , Humanos , Bibliotecas de Moléculas Pequenas/classificação , Interface Usuário-Computador
15.
Drug Discov Today ; 27(1): 151-164, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560276

RESUMO

Artificial intelligence (AI) is often presented as a new Industrial Revolution. Many domains use AI, including molecular simulation for drug discovery. In this review, we provide an overview of ligand-protein molecular docking and how machine learning (ML), especially deep learning (DL), a subset of ML, is transforming the field by tackling the associated challenges.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Ligantes , Simulação de Acoplamento Molecular/métodos , Aprendizado Profundo , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos , Aprendizado de Máquina
16.
Drug Discov Today ; 27(1): 8-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600126

RESUMO

Drug discovery currently focuses on identifying new druggable targets and drug repurposing. Here, we illustrate a third domain of drug discovery: the dimensionality of treatment regimens. We formulate a new schema called 'Manifold Medicine', in which disease states are described by vectorial positions on several body-wide axes. Thus, pathological states are represented by multidimensional 'vectors' that traverse the body-wide axes. We then delineate the manifold nature of drug action to provide a strategy for designing manifold drug cocktails by design using state-of-the-art biomedical and technological innovations. Manifold Medicine offers a roadmap for translating knowledge gained from next-generation technologies into individualized clinical practice.


Assuntos
Doença , Descoberta de Drogas , Reposicionamento de Medicamentos , Homeostase , Ciência Translacional Biomédica/métodos , Combinação de Medicamentos , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Bases de Conhecimento , Farmacologia Clínica/tendências , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Teoria de Sistemas
18.
Drug Discov Today ; 27(1): 31-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571277

RESUMO

Agonist antibodies that activate cellular signaling have emerged as promising therapeutics for treating myriad pathologies. Unfortunately, the discovery of rare antibodies with the desired agonist functions is a major bottleneck during drug development. Nevertheless, there has been important recent progress in discovering and optimizing agonist antibodies against a variety of therapeutic targets that are activated by diverse signaling mechanisms. Herein, we review emerging high-throughput experimental and computational methods for agonist antibody discovery as well as rational molecular engineering methods for optimizing their agonist activity.


Assuntos
Anticorpos Monoclonais/farmacologia , Descoberta de Drogas , Tecnologia Farmacêutica , Produtos Biológicos/farmacologia , Simulação por Computador , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos , Fatores Imunológicos/farmacologia , Transdução de Sinais/efeitos dos fármacos
19.
Braz. J. Pharm. Sci. (Online) ; 58: e19724, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1384025

RESUMO

Abstract Innovation is the driving force that is able to create and transform products, processes, and organization in the health system. Innovation in the field of pharmaceutical assistance covers a wide spectrum of aspects, from drug discovery to pharmaceutical care, contributing to the improvement in treatments through novel drugs or methods. This work will present the major characteristics of innovation with special emphasis on aspects pertaining to pharmaceutical assistance. The types and models of innovation, as well as the interaction between academia and industry, will be presented with examples of successful products and methods. In addition, the challenges and perspectives for innovation in pharmaceutical assistance will be discussed with a focus on drug discovery.


Assuntos
Assistência Farmacêutica/classificação , Criatividade , Sistemas de Saúde , Preparações Farmacêuticas/classificação , Medicamentos de Referência , Descoberta de Drogas/tendências , Indústrias/tendências , Métodos
20.
Nutrients ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836055

RESUMO

Pancreatic cancer, the seventh most lethal cancer around the world, is considered complicated cancer due to poor prognosis and difficulty in treatment. Despite all the conventional treatments, including surgical therapy and chemotherapy, the mortality rate is still high. Therefore, the possibility of using natural products for pancreatic cancer is increasing. In this study, 68 natural products that have anti-pancreatic cancer effects reported within five years were reviewed. The mechanisms of anti-cancer effects were divided into four types: apoptosis, anti-metastasis, anti-angiogenesis, and anti-resistance. Most of the studies were conducted for natural products that induce apoptosis in pancreatic cancer. Among them, plant extracts such as Eucalyptus microcorys account for the major portion. Some natural products, including Moringa, Coix seed, etc., showed multi-functional properties. Natural products could be beneficial candidates for treating pancreatic cancer.


Assuntos
Produtos Biológicos/uso terapêutico , Descoberta de Drogas/tendências , Medicina Tradicional/tendências , Neoplasias Pancreáticas/tratamento farmacológico , Fitoterapia/tendências , Inibidores da Angiogênese , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...